
2020-10-02

1

ECE 150 Fundamentals of Programming

Douglas Wilhelm Harder, M.Math. LEL

Prof. Hiren Patel, Ph.D., P.Eng.

Prof. Werner Dietl, Ph.D.

© 2018 by Douglas Wilhelm Harder and Hiren Patel.

 Some rights reserved.

Wild pointers

2
Wild pointers

Outline

• In this lesson, we will:

– Define wild pointers

– See how wild pointers cause problems

• Sometimes you’re lucky; other times, you’re not…

– Review the steps for avoiding wild pointers

3
Wild pointers

Wild pointers

• Uninitialized local variables can cause problems

– When they are pointers, it is much worse!

– An uninitialized pointer is described as a wild pointer

• “Wild” because we have no idea what its value is

4
Wild pointers

Wild pointers

• The most significant issue is cross-platform development

– Suppose you declare this variable while developing on a Windows
platform:

 array_t *p_vec;

– If you run this code over and over, the default value is 0x000…0

• This is the value of 'nullptr'

– If you compile this same code on Linux, suddenly, you get that it has
the value 0xa83419d2f835073d or some other random value

2020-10-02

2

5
Wild pointers

Wild pointers, if you are lucky…

• Consider this code:

#include <iostream>

int main();

void f();

int main() {

 std::cout << "In main()..." << std::endl;

 f();

 return 0;

}

void f() {

 int *p_value;

 std::cout << "In f(): " << p_value << std::endl;

 *p_value = 42;

}

Output:
 In main()...
 In f(): 0x7f51abb16b9e
 Segmentation fault (core dumped)

6
Wild pointers

Wild pointers, if you are lucky…

• Whatever memory is at 0x7f51abb16b9e, it is almost certainly not
assigned to your program

– When you tried to access it,
 the operating system terminated your program

– Your program cannot access memory not allocated by the operating
system to your program

7
Wild pointers

Wild pointers, if you aren’t lucky…

• Consider this code:

#include <iostream>

int main();

void init();

void no_init();

int main() {

 init();

 no_init();

 return 0;

}

8
Wild pointers

Wild pointers, if you aren’t lucky…

void init() {

 int *p_value{new int{42}};

 std::cout << "In init(): " << p_value

 << std::endl;

 // Use 'p_value'...

 delete p_value;

 // Why bother setting 'p_value' to nullptr?

}

void no_init() {

 int *p_local;

 std::cout << "In no_init(): " << p_local

 << std::endl;

 *p_local = 91;

}

Output:
 In init(): 0x1ca3010
 In no_init(): 0x1ca3010
Your results may differ…

2020-10-02

3

9
Wild pointers

Wild pointers, if you aren’t lucky…

• Why did this code execute?

– In the first function, the local variable was assigned new memory:

 int *p_value{new int{42}};

– At the end of the function, the memory was deallocated but not reset
to 'nullptr'

• After all, the variable is immediately going out of scope

 delete p_value;

• The operating system is, however, lazy and leaves that memory
allocated to you as you may request more memory in the future

– In the second function, the local variable occupies the same location
in memory on the call stack

• The value from the first function call is still there

10
Wild pointers

Avoiding wild pointers

• To avoid wild pointers

– Always initialize all pointers, even if it is to 'nullptr'

 int *p_value{};

 int *p_value{nullptr};

– Benefit:

• Assigning to the memory location 0x0 will always terminate your

program, guaranteed

– When memory is being deallocated, always set the pointer to
'nullptr' even if the local variable is going out of scope

 delete p_value;

 p_value = nullptr;

11
Wild pointers

Summary

• Following this lesson, you now

– Understand that wild pointers are uninitialized pointers

– Know that accessing wild pointers will result in two consequences:

• The operating system may terminate your program, or

• You may use memory that has been allocated to you for other
purposes

– Understand that:

• The first problem is easy to track down

• The second is difficult or impossible to track

– Know that you must always initialize all pointers and set them to
'nullptr' after any deallocation

12
Wild pointers

References

[1] Wikipedia: https://en.wikipedia.org/wiki/Dangling_pointer

• This page also covers wild pointers

2020-10-02

4

13
Wild pointers

Colophon

These slides were prepared using the Georgia typeface. Mathematical
equations use Times New Roman, and source code is presented using
Consolas.

The photographs of lilacs in bloom appearing on the title slide and
accenting the top of each other slide were taken at the Royal Botanical
Gardens on May 27, 2018 by Douglas Wilhelm Harder. Please see

https://www.rbg.ca/

for more information.

14
Wild pointers

Disclaimer

These slides are provided for the ECE 150 Fundamentals of
Programming course taught at the University of Waterloo. The
material in it reflects the authors’ best judgment in light of the
information available to them at the time of preparation. Any reliance
on these course slides by any party for any other purpose are the
responsibility of such parties. The authors accept no responsibility for
damages, if any, suffered by any party as a result of decisions made or
actions based on these course slides for any other purpose than that for
which it was intended.

